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The problem of the existence of first integrals which are linear fimctions of the generalized velocities (momenta and quasi-velocities) 
is discussed for conservative non-holonomic Chaplygin systems with symmetry, as well as methods for investigating the existence, 
stability, and bifurcation of the steady motions of such systems. These methods are based on the classical methods of 
Routh-Salvadori, Poincar6-Chetayev, and Smale, but unlike the latter they do not require a knowledge of the explicit form of 
the linear integrals. The general conclusions are illustrated by the example of the problem of an ellipsoid of revolution moving 
on an absolutely rough horizontal surface. It is shown how in this case numerical techniques can be used to construct the 
Poincar6-Chetayev diagram - a surface in the space of generalized coordinates and constants of linear first integrals corresponding 
to motions in which the velocities of the non-cyclic coordinates vanish, while those of the cyclic coordinates are constant, and 
the Smale diagram - a surface in the space of constants of linear first integrals and the energy integral corresponding to these 
motions. © 2005 Elsevier Ltd. All rights reserved. 

Non-holonomic systems with symmetry always admit of steady motions but, as a rule, they do not have 
linear integrals. The questions of the existence of such integrals therefore requires special discussion 
[1]. Moreover, even in cases when linear integrals exist, explicit expressions for them are generally 
unknown [2, 3], and the application of the classical methods of qualitative analysis also requires a special 
discussion [4-6]. 

1. C O N S E R V A T I V E  N O N - H O L O N O M I C  S Y S T E M S  W I T H  S Y M M E T R Y  

Consider a conservative non-holonomic system with n degrees of freedom. Let ql, . . . ,  qn, z 1, . . . ,  z v be 
the generalized coordinates of the system, whose velocities are constrained by v non-integrable relations 

~g = b~(q)o r (1 .1)  

Here and below, g = 1, ... , v; r, s, p = 1, ... , n; repeated indices indicate summation within the 
appropriate limits. Let T = T(q, il, 2) be the kinetic energy of the system (a positive-definite quadratic 
form in the generalized velocities q, 2), V = V(q) is the potential energy. With suitable assumptions 
(b~, T and V do not depend on the generalized coordinates z, whose velocities appear on the left of the 
constraint equations (1.1)), the system is a Chaplygin system, and its equations of motion in Chaplygin 
form 

_ . .s .p (1.2) d 3T,  OT, ~V + O)rsPq q 
dt bgl r 3qr ~qr 
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may be considered independently of the equations of non-holonomic constraints. Here 

T, = T(q, 4, iI = T,(q, 4) = ;a,,(q)4’4g > 0 V/4#0 

We introduce the notation 

%(sp) = %p + @rps* yrsp) = %p + Opsr 

We will denote the coordinates 4’ by 2 (i = 1, . . . , k) and the coordinates qcc by y” (a = k + 1, . . . , n), 
and assume that Chaplygin’s equations are invariant under an (n - k)-parameter group of 
transformations x -+x, y + y + cp (cp E R” -k). This means that they coordinates are cyclic, in the sense 
that 

aa av -rs=(), -=o a%,* 0 
ha ha 

’ aya= 

Under these conditions Eqs (1.2) become 

dJT* - aT, av - 7 - 7 + cl+j,iJih + clQja)iJja + OiapjayP 
dt aii ax’ ai 

... daT, .i .p .P .Y 
dt 33” - ocxiji’xJ + ou(ip)x Y + CL)aPyY Y 

(1.3) 

(1.4) 

(1.5) 

Hereandhenceforthi,j,h=l,..., k;a,p,y,F,E=k+l,..., n. 
It is obvious that Eqs (1.4) and (1.5) always have an energy integral 

H = T, + V = ~aij(x)tiij+aia(x)i’$a + ia,p(x)3”,‘P + V(x) = c,, = const (1.6) 

but in general they do not have cyclic integrals of the form aT.&” = const (compare with [l]). 

2. LINEAR INTEGRALS OF NON-HOLONOMIC CHAPLYGIN SYSTEMS 

We will now ascertain under what conditions Eqs (1.4) and (1.5) h ave integrals that are linear in the 
generalized velocities, of the form 

aT I, = c!(x)> = c,P(apjd+ apyjY) = c, = const 
af 

satisfying the condition 

det(ct) f 0 (2.2) 

(h;Fa;;d henceforth a, b = 1, . . . , y1- k). Differentiating 1, with respect to time and using Eqs (1.5), 

dI, ac! i 
-= Fi (apjiJ + a&‘) + c,P( Opiji’iJ + wpcir,i’~’ + (J++~J+) 
dt ai 

Thus, the functions I&, i’, ,‘) are first integrals linear in & 3 if and only if 
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The first set of relations (2.3) implies the identities 

aCa ~ _ I~r a (llal~rll ila  ll-, ) (2.4) ~x--- 7 = a f.I)g(i,y)c a = 

which are a system of linear partial differential equations in the functions c~(x). This system is completely 
integrable provided that 

3 ~ 3 a~ ~ 
~xj(a ¢o(ia~)) - ~x/( O)(jo~g) ) + a~laf~(O)(i87)O)(jae) - O)(j&g)O)(ic~e) ) = 0 

or, expressed differently, 

r (~oa(ir)D)~-O°)(JaD= ~ arSO)(ia~)(gJafJ'+O)(j,~D) 3¢°(m13) + arac.o(jar) + 
3x j , t, 3x j 

(2.5) 

Thus, under conditions (2.5) functions c~(x) satisfying relations (2.4) and (2.2) exist, allowance of 
which enables us to reduce the last two sets of conditions (2.3) to the form 

f.Oa(ij ) + a (af~jf.O(ia7) + a~iOJ(j~.~) ) =- O, 0)~(,~8 ) =-- 0 (2.6) 

Thus, Eqs (1.4) and (1.5) always have an energy integral (1.6), and also (under conditions (1.3), (2.5) 
and (2.6)) linear integrals (2.1) with generally unknown coefficients c~a(x) that satisfy the system of partial 
differential equations (2.4) and condition (2.2). Note that conditions (2.5) are necessarily valid when 
k = 1, and the last set of conditions (2.6) is valid when n - k = 1. 

3. THE E F F E C T I V E  P O T E N T I A L  OF A C O N S E R V A T I V E  
N O N - H O L O N O M I C  C H A P L Y G I N  SYSTEM 

We will now determine the minimum of the total mechanical energy of system (1.6) as a function of 
the generalized coordinates 2, 3~ at fixed levels of the linear integrals (2.1) (the effective potential). To 
that end, we introduce a function F = H -  ~a(/~ _ ca), where ~a are undetermined Lagrange multipliers, 
and write the conditions for it to be stationary with respect to 2, ~ 

a...FF = aij2J + aif~(29f~ _ C~a~a) = O, OF = aaj.ij + aaf~(~gf~ _ C~a~a) = 0 (3.1) 

3F. = ca _ C~a(%j.ij + al~ry,t) = 0 (3.2) 
3X" 

Equations (3.1) imply relations 2i  = 0,  ))e~ = c ~ b .  substituting these into Eqs (3.2), we obtain 

-i) 
a cxc~% = c~ (3.3) 

Thus, a minimum of H as a function of 2, 3~ on the linear manifold (2.1) is attained at 

.lf i = 0 ,  ~ a  = aaf~(X)C; (X)Ca  (3.4) 

and is equal to 

1 a~  a b 
V C = V(x) + 72a (X)CeL(X)Cf~(X)CaCb (3.5) 

Formula (3.5) defines the effective potential Vc(x) of the system. Its explicit form, however, is generally 
unknown, since we lack explicit expressions for the functions c~(x) satisfying Eqs (2.4) and condition 
(2.2), which certainly exist when conditions (1.3), (2.5) and (2.6) are satisfied. 
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4. THE STEADY MOTIONS OF N O N - H O L O N O M I C  CHAPLYGIN 
SYSTEMS WITH SYMMETRY 

According to the general Routh theory for systems with symmetry [7-16], critical pointsx0 of the effective 
potential Vc(x) correspond to steady motions of the form 

x i i .a .e aaf~(Xo(C))C ~ = Xo(C), y = Yo(C) = (Xo(C))% (4.1) 

and the minimum points correspond to stable steady motions. Under these conditions the familiesx0(c) 
are determined from the equations 

Ct[I a b 

bY+ 13(a cecf~)%% = 0 (4.2) 
3x i 2 3x' 

and define the Poincar6-Chetayev bifurcation diagram in the space R n - k X Rk(c; x). After evaluating 
Vc(xo(C)) = f(c), we can then construct the Smale bifurcation diagram, which is defined in the space 
R n -/¢ x R(c; Co) by the relation Co = t ic).  The surfaces c o = f(c) divide the space of constants of first 
integrals (1.6) and (2.1) of the system into domains that differ in the topological type of domains where 
motion is possible, which are defined by the inequality Vc(x) <- Co. In the general case, however, explicit 
formulae x = Xo(C) and Co = t ic)  defining the Poincar6-Chetayev and Smale diagrams are not available, 
since, as already pointed out, it is not possible to write explicit expression for the effective potential. 

Steady motions of the system may be obtained in explicit form in at least two ways [13]. First, a steady 
motion may be expressed as 

i i .ct  . ~  
x = x0(0~), Y = Y0 = m (4.3) 

In that case the families x0(co) are determined from the equations (see [13]) 

OV ( i Oae~ ) 
----= + - - + o)~il~ o~ao~ 13 = 0 (4.4) 
3x' 2 3X i 

Second, steady motion of the system may be expressed as 

i i x = xo(P), 3 T , 1 3 S  t = Pa (4.5) 

In that case the families x0(p) are determined from the equations (see [13]) 

.-=. + + O),li~a~l~a afj = 0 (4.6) 3x' 2~. 3x i P¢xP~ 

Moreover, choosing the quantities c% orpa as parameters of the family of steady motions, we can obtain 
in explicit form the conditions for the effective potential to have a minimum at its critical point x0, and 
hence also the conditions for the corresponding steady motion to be stable. Indeed, the second variation 
of the effective potential is 

I ~i~.j i i 
= ----- X - - X o )  ~52Vc(xo) ~vi:~ c, (~i 

and its coefficients may be expressed explicitly in terms of the parameter 

+ 2OxiOx j 3x a ) t. 3xi +O)i(ev))t'-'ff-ff j .,x=xo(<.o) 

Similarly (see [13]), we can write explicit expressions for the coefficients a)ij in terms of the parameter 
p. 

However, neither the parameters co (the velocities of the cyclic coordinates) nor the parameters p 
(the momenta corresponding to cyclic coordinates) are essential in Chetayev's sense [10], since they 
preserve their initial values only in steady motions, and therefore relations (4.3)-(4.6) are not suitable 
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X~ M 0 

I 
Fig. 1 

for constructing Poincar6-Chetayev and Smale diagrams; hence the problem arises of writing algorithms 
for constructing these diagrams on the basis of relations (4.1) and (4.2), which involve the functions 
c(x), whose explicit form is unknown, though they satisfy a well-defined system of linear partial differential 
equations. This problem will be solved below for a specific holonomic Chaplygin system - a heavy solid 
of revolution on an absolutely rough horizontal plane. 

5. THE EQUATIONS OF MOTION OF A SOLID OF REVOLUTION ON 
A ROUGH PLANE 

Consider a heavy, absolutely rigid, dynamically symmetrical solid body bounded by a surface of 
revolution, rolling without slipping on a fixed horizontal plane, on the assumption that the centre of 
gravity G of the body is on its axis of symmetry G~. Let M be the point of contact of the solid with the 
plane. 

We introduce a coordinate system Oxyz as follows. The point O lies on the supporting plane Oxy, the 
Oz axis points vertically upward. Let 0 denote the angle between the axis of symmetry of the body and 
the vertical, [3 the angle between the meridian M~ of the body and some fixed meridional plane, and 
cz the angle between the horizontal tangent MQ to the meridian M~ and the Ox axis. The position of 
the body is uniquely defined by the angles ~, 13 and 0 and the coordinatesx andy of M. We also introduce 
a system of coordinates G~11~ which moves both in the body and in absolute space as follows: G~ is 
the axis of symmetry of the body, the G~ axis always remains in the plane of the vertical meridian M~, 
and the G~ axis is perpendicular to it (Fig. 1). Suppose the vectors of the velocity of the centre of mass 
G, the angular velocity of the body, and the angular velocity of the trihedron G{rl~ are given in the 
coordinate system G{rl~ by their components a~, a)n, a);; p, q, r and f~, f2n, f2;, respectively. Let rn be 
the mass of the body, A1 its moment of inertia about the axes G{ and Gq, andA3 its moment of inertia 
about the axis of symmetry. 

Note [2, 3] that the distance GQ from the centre of gravity to the Oxy will be a function of the angle 
0, say, GQ = f(0). The coordinates {, 1] and ~ of the point M at which the body and the plane touch in 
the system of coordinates G{rl~ will also be functions of the angle 0 only, with 11 = 0, while 

= - f (0 ) s in0 -  f '(0)cos0, ~ = - f(0)cos0 + f '(0)sin0 (5.1) 

Since the G~ axis is fixed in the body, f~  = p, O., n = q. The G ~  plane will remain vertical permanently, 
and therefore f2; - f2~ ctg0 = 0. Since there is no slipping 

v~+q~ = O, v n + r ~ - p ~  = O, v ; - q ~  = 0 

Let us write down the law governing the variation of the momentum and the angular momentum 
projected onto the axes of the fixed system of coordinates. Eliminating the components of the velocity 
of the centre of mass and the components of the reaction of the supporting plane, by using the equations 
of the constraints, we obtain three differential equations forp, q and r 
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[A 1 + m(~ 2 + ~2)]~-~q t = mgf'(O) + (A3r-AlpctgO)p- 

- mp( ~ ctgO + ~)(P~ - r{) - mq(~ ~t + ~ t  ) 

Al~t . ~dr +A3~ ~ = (AlpctgO-A3r)q 

(5.2) 

A3 dr d ( p ~  - r~) - = ( ;ctg0 + {)pq 

where { and ~ are functions of 0 defined by equalities (5.1). Adding the obvious relation 

q = -dO/dt (5.3) 

to Eqs (5.2), we obtain a closed system of four differential equations in the unknown functions of time 
p, q, r and 0. 

This system of equations has an energy integral H = const. By Koenig's theorem and the no-slip 
conditions, it may be written in the form 

l 2 1 2 H = ~alpl 2 + ~(all + m(~2 + ~2))q2 + ~a3r + ~m(p~ - r~) + mgf(O) = const (5.4) 

In addition [2], these equations have two linear integrals K1 = kl  = const and Kz = k2 = const, of 
the form 

K = KI = O - l ( 0 ) o ,  to = P 
K 2 r 

(5.5) 

where O(0) is the fundamental matrix of the following system of equations (the prime, as before, denotes 
differentiation with respect to 0) 

to'(0) = A(0)to(0) (5.6) 

]- ctg(0) A3m~(~ + ~') A3(A3 +m~2+m~'~) 
A ~ - " ~ -  

A(0) = Alm~(~A + 4') m~(a3~A- AI~') 
A = A1A 3 +Alm{ 2 + A3rn~ 2 

6. THE STEADY MOTIONS OF THE BODY 

Problems of the existence and stability of the steady motions of the body will be investigated using Routh 
theory. According to that theory, the critical points of the energy integral at fixed values of the constants 
of the other integrals define steady motions of the body. Let us construct the effective potential - the 
minimum of the energy integral (5.4), which is a quadratic function ofp, q and r, at fixed levels of the 
linear first integrals (5.5) 

Wk(0 ) = minH = Hlq=O,o~=o(o )  k = 
p,q,r  K = k  

1 2 1 z 1 kl (6 .1 )  
= 72 Alp +2 A3r +~2m(p~-r{) 2+mgf(0) ,  k = ka 
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where {, ~ and f a r e  known functions of 0, butp and r are functions of the variable 0 and of the constants 
kl and kz which are not explicitly known;p(0, kl, k2) and r(O, ka, k2) are the general solution of system 
(5.6). The steady motions correspond to solutions of the equation 

and they have the form 

! 

Wk(0)  = 0 (6.2)  

0 = Oo(k l,k2), co = ~ ( 0 0 ( k ~ , k z ) ) k  , q = 0 (6.3)  

Differentiating the function (6.1) with respect to 0 and using Eqs (5.6), we represent Eq (6.2) in the 
form 

F(kl,  k2, 0 ) =  W~(0, =-(A,-~-~--so)CtgOp2+(A3-mi~nO)rp+rngf '=O (6.4) 

For further investigation of the steady motions of the body, numerical techniques may be used to 
construct the Poincar6-Chetayev diagram - the surface in (kl, k2, 0)-space defined implicitly by Eq. 
(6.4), and the Smale diagram - the surface in the space of the constants of the first integrals (kl, k2, h) 
corresponding to steady motions. An algorithm is available for constructing these diagrams [6] which 
does not require a knowledge of the explicit form of the functionsp(0, kl, k2) and r(O, kl, k2). 

7. AN E L L I P S O I D  OF R E V O L U T I O N  M O V I N G  ON 
AN A B S O L U T E L Y  R O U G H  P L A N E  

As an example, let us consider the motion of a homogeneous ellipsoid of revolution whose surface is 
defined by the equation 

 2_+n2+ ; 2  = 1 (7.1) 
a 2 ~2a2 

where K < 1, that is, the ellipsoid is oblate in the direction of the G~ axis. Then the distance GQ = riO) 
from the centre of gravity to the Oxy plane is defined by 

f (0 )  = aJsin20 + XZcos20 (7.2) 

and the coordinates of the point of contact, according to (5.1), will be 

a sin 0 a~, 2 cos 0 
, ; = (7.3)  

= Jsin20 + ~,Zcos20 JsinZ0 + K2cos20 

Denote the density of the ellipsoid by P- Then the following values are obtained for its mass and its 
equatorial and axial moments of inertia (A1 and A3, respectively) 

4 3 4 = 8 (7.4) m = ~ n p ~ a ,  A 1 = rcp~(l+~Z)a 5, A 3 ~9~,a 5 

Substituting expressions (7.2), (7.3) and (7.4) into the system of equations (5.6) we obtain 

"c'(0) = ( -  ctg(0) - 10Ak2(1 - ~,2) cos0 sin30)x + 

+ 2A[(7 - 9L 2 + 2k4)cos40 + ( -  14 + 9~, 2 + 5L4)cosZ0 + 7In 

n'(0) = 5A(1 - ;~,4) sin40/+ 5A~,2(1 - ~,2)sin0cos0(1 - 2cos20)n (7.5) 

A = [(7 - 2~ 2 -  17~, 4 + 12~,6)cos40 + ( -  14 - 5~, 2 + 19~4)cos20 + 7 + 7~2] -l 

where the dimensional components of the angular velocityp and r have been replaced by non-dimensional 
components "c and n in the following way: 

= p~/All(mga),  n = r,,/Al/(mga) 
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7~/8 

0 

r~12 

n/8 
-( 

Fig. 2 

We also write the energy integral (5.4), the effective potential (6.1) and its derivative (6.4) in 
dimensionless notation 

{_I_ H 1 2 z ) (  A~m~al2 
mga - ~'c + ~(l  +-~l({Z+ ~ ) q + 

1A3 2 1 m .  ~ ..~,2 + f (0 )  = const (7.6) 

Wk(0) = 1 2 1A3nz + 1 m f (0)  
~'t + 2~11 2~11 ( '~ ; -  n~)2 + a (7.7) 

= F(k 1, k 2, 0) = _ Kctg0x2 + Lxn + f'(O) = 0 
mga a 

K = 1 - m ~ ( 0 )  = 1+6~, 2 L - A3 m~f(0) _ 
A lcos0 1 + ~ 2 '  A 1 A 1sin0 1 -I-~, 2 

(7.8) 

An explicit form of the solutions of system (7.5) is not known, but the MAPLE 7 software package 
can be used to construct numerically two independent solutions 

! 

zi [ ,  i = 1, 2 Si 
n i I 

of the system (for L = 1/5) with the following initial conditions 

I 1]] so=,  0 $2 = Sz = ; (7.9) 
$1 = $1 = 08 0.8 n o 

Then an arbitrary solution of system (5.2) is a linear combination of these two solutions 

S = X = klS1 + k2S2 
n 

On the assumption that k~ and k 2 are constants of the linear integrals of system (7.5), the Poincar6- 
Chetayev and Smale diagrams were constructed numerically (as illustrated in Fig. 2 on the left and right, 
respectively). We will analyse these diagrams below. 
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8. A N A L Y S I S  OF T H E  D I A G R A M S  

The choice of initial conditions. The diagrams ofF(k1, k2, 0) = 0 and F(kl, k2, 0) = 0, constructed with 
different choices of initial conditions, can be transformed into one another by a linear substitution 
[q = akl + bk2, [c2 = ckl + dk2. 

Symmetries. First of all, we note (see expressions (7.6) and (7.8)) that the left-hand sides of the 
equations of the Poincar6-Chetayev and Smale diagrams are sums of forms of second and zeroth degree 
in x and n, which in turn are linear combinations of kl and k2. Hence the surfaces are invariant under 
the substitution 

(kp k 2, 0)---~(-k 1, -k2, 0) 

that is, they possess axial symmetry about the straight line kl -- 0, k 2 -- 0. 
At the same time, the surface of the body is symmetrical about the Gq~ plane through the centre of 

mass perpendicular to the axis of symmetry; hence, system (7.5), the energy integral (7.6), and the 
effective potential (7.7) are unchanged by the substitution 

(O,'c,q,n)---) (0' = n -  0, "c' = "c, q '=  -q,  n '=  -n)  

Then, denoting the components of the fundamental matrix as follows: 

= E  

we obtain 

O('/t_0,2) = 01(0) 02(0) 
--~/1 (0)  11/2(0) 

= (~1 (0)  --(~2(0) 

~/1 (0)  ~[/2 (0)  

We will consider a certain steady motion (kl, k~, 00). For this motion, for the components of the angular 
velocity x and n we have 

T O --- 00 ikll xl z2 k = 
0 0 k2 /'11 /l 2 

Corresponding to this steady motion on the Poincar6 diagram is another steady motion (n - 00, kl, k2), 
with 

fi -n  2 z )  

Hence we can determine the relation between k and k. We have 

= iCl 
i,2 

- n  0 -  

Thus 

k = (To)-lZTo ~ (8.1) 

Sections of the Poincard-Chetayev diagram. Consider the level curves of the Poincar6 diagram, that 
is, its sections by planes 0 = const (projections of certain sections onto part of the plane of constants 
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aztl Illi  0.2 ~ 7 . t t  
0.1 

0 - - D e -  

-0.1 

-0.2 " 4 ~  

-0.1 

2 

1 l ~--'~'-Z~ ~.. , ,  

0 

w 4 // 
i 2  

1 k _ . / ' -  

-0.3 
0 -0.2 k2 0 1 2 0 

F i g .  3 

of linear integrals kl ~ [-0.3, 0.3], k2 ~ [-0.3, 0] are shown in Fig. 3, left). As is obvious from (7.8), each 
section is a second-order curve. We will obtain its linear invariants, using Eq. (7.8) and the fact that 
for fixed 0 the substitution (~, n) --+ (kl, k2) is linear. We have 

= 
- K c t g 0  L/2 

L/2 0 

L 2 7 
= - - - < 0  

4 1 +)~2 

A = ec~_j,,0,~ = i f (o)  7 
1+~2;  A = 0 ¢ : * 0  = -~2 a a 

(8.2) 

and therefore a section of the diagram is either a hyperbola (if 0 ¢ ~t/2) or a pair of intersecting straight 
lines (if 0 = ~/2). In the latter case, one of the straight lines corresponds to a motion of the body in 
which it is uniformly rolling along a straight line, with the body's axis of symmetry horizontal and the 
centre of mass moving at an arbitrary constant velocity; the other corresponds to motion of the body 
in which it is revolving at an arbitrary constant angular velocity about a vertical straight line, with its 
centre of mass motionless. 

The stability of  steady motions when 0 = g/2. The derivative of the effective potential (7.8) when 
0 = rU2 is 

0 o o 
/~(0 = n/2) = -~5~n = -~(klX 7 + k2x2)(klnl + k2n2) 

(the quantity 8 is defined by the first equality in (8.2)). The equations 

0 
"~ = k lz ~+k2x 2 = 0 (8.3) 

n = kin ~ *k2n 7 = 0 (8.4) 

are the equations of straight-line sections of the surface P = 0 by the plane 0 = rU2. The steady motion 
will be stable if 

Let us evaluate the second derivative of the effective potential (7.7) along trajectories of system (7.5) 

2 2 , , 
W~(0) = F' = Ksin- 0x - 2Ketg0xx + Lx n + Lxn' + f"(O)la 
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k~ + k 2 = + 0 . 4  k t + k z = + 0 . 2  kl + k 2 = 0  
1.5 

1.0 i 

0.5 
~0 Xq0 f~0 

-1 0 k l - k  2 1 -1  0 k t - k  2 1 - 1  0 k l - k  2 1 

Fig. 4 

The steady motions (8.3) corresponding to z = 0 are stable if 

~, _ 14 2+~2_1>0 
(1 + ~,2) 2n 

and the motions (8.4) (n = 0) are stable if 

~, = 6 + ~ ,  2 2 
1 + ~ 2  "~ + ~ ' 2 -  1 > 0  

These results agree with previous results in [4], where the stability of a solid of revolution was 
investigated. For £ = 1/5 and initial conditions (7.9), a change of stability occurs for the following values 

k I = k 2 = 0.17, k x = k 2 = - 0 . 1 7 ,  k s = - k  2 = 0.21, k s = - k  2 = - 0 . 2 1  

corresponding to the vertices of the curvilinear quadrilateral in Fig. 3. 

The effective potential. The plane of the constants (kl, k2) may be divided into two domains (the part 
{kl e [-0.3, 0.3], k2 e [-0.3, 0]} is shown in Fig. 3, left, the region {k2 > 0} is centrally symmetrical to 
that shown). Outside the curvilinear quadrilateral (the region De) , for every pair of constants of linear 
integrals, only one steady motion exists, to which the minimum of the effective potential corresponds, 
so that it is stable. Inside the curvilinear quadrilateral (the region D1), corresponding to each pair (ki, 
k2) there are three steady motions, of which two are stable and one is not. This region is symmetrical 
about the point O and invariant under the linear transformation (8.1). Figure 3 shows graphs of the 
effective potential corresponding to a few pairs of constants: ks -- 0.185, k2 = -0.04 (curve 1); k 1 = 0.1, 
k2 = -0.05 (curve 2); kl = 0.01, k2 = -0.1 (curve 3); kl = -0.25, k2 = -0.25 (curve 4); kl = -0.17, 
k2 = -0.17 (curve 5); kl = -0.1, k2 = -0.05 (curve 6). 

The Smale diagram. Sections of the Smale diagram (see the right-hand part of Fig. 2) by planes 
kl + k2 = const are shown in Fig. 4. The surface of the diagram divides the space of constants of first 
integrals into three regions. In the region ~1 the set of possible variation of the angle 0 is a segment; 
in the region f22 it is the union of two segments, and in the region f20 - the empty set. 

In conclusion, we note that the technique proposed enables are to construct bifurcation diagrams 
and so provide a qualitative description of the dynamics of any convex solid of revolution. 
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